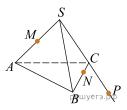

- **1.** $ABCA_1B_1C_1$ правильная треугольная призма, у которой сторона основания и боковое ребро имеют длину 6. Через середины ребер AC и BB_1 и вершину A_1 призмы проведена секущая плоскость. Найдите площадь сечения призмы этой плоскостью.
- 2. Площадь осевого сечения цилиндра равна 10. Площадь его боковой поверхности равна:

3) 20π

- 1) 5π
- 2) 10π
- 4) 20
- 5) 10
- 3. Образующая конуса равна 26 и наклонена к плоскости основания под углом 60°. Найдите площадь боковой поверхности конуса.

 - 1) 338π 2) $338\sqrt{3}\pi$ 3) 169π
- 4) $260\sqrt{3}\pi$
- 5) 676π

4. $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед такой, что AB = 12, AD = 3. Через середины ребер AA_{1} и BB_{1} проведена плоскость (см.рис.), составляющая угол 60° с плоскостью основания ABCD. Найдите площадь сечения параллелепипеда этой плоскостью.



- 2) $36\sqrt{3}$ 3) 36 1) 72
- 4) 18
- 5) $36\sqrt{2}$
- **5.** Объем конуса равен 5, а его высота равна $\frac{1}{2}$. Найдите площадь основания конуca.
 - 1) $\frac{5}{6}$ 2) $\frac{10}{3}$ 3) 10 4) 30 5) $\frac{15}{2}$
- 6. Куб вписан в правильную четырехугольную пирамиду так, что четыре его вершины находятся на боковых ребрах пирамиды, а четыре другие вершины — на ее основании. Длина стороны основания пирамиды равна 2, высота пирамиды — 6. Найдите плошадь S поверхности куба. В ответ запишите значение выражения 4S.
- 7. Точки А, В, С лежат на большой окружности сферы так, что треугольник АВС равносторонний. Если $AB = 3\sqrt{6}$, то площадь сферы равна:
 - 1) 144π
- 2) 72π
- 3) 36π 4) 18π
- 5) 68π

- 8. Найдите площадь боковой поверхности правильной треугольной пирамиды, если длина биссектрисы ее основания равна $4\sqrt{3}$ и плоский угол при вершине $2 \arctan \frac{4}{5}$.
- 9. Через точку A высоты SO конуса проведена плоскость, параллельная основанию. Определите, во сколько раз площадь основания конуса больше площади полученного сечения, если SA : AO = 2 : 3.

1)
$$6\frac{1}{4}$$
 2) $7\frac{1}{4}$ 3) $2\frac{1}{4}$ 4) $1\frac{1}{2}$ 5) $2\frac{1}{2}$

- 10. Найдите плошаль полной поверхности прямой треугольной призмы, описанной около шара, если плошаль основания призмы равна 7.5.
- **11.** В тетраэдре *SABC* с ребром 24 точка *P* принадлежит SC так. что SC:PC=2:1 и AS:AM=2:1. CN:BN=1:3. Найдите плошаль сечения тетраэлра плоскостью MNP.

1) $18 + 12\sqrt{7}$ 2) $27\sqrt{37}$ 3) $18 + 3\sqrt{37}$

2/3

- 4) $81\sqrt{3}$
- 5) $9\sqrt{3}$
- 12. В основании пирамиды лежит прямоугольный треугольник, длина гипотенузы которого равна 6, острый угол равен 30°. Каждая боковая грань пирамиды наклонена к плоскости основания под углом, равным $\arccos \frac{\sqrt{3}}{10}$. Найдите площадь боковой поверхности пирамиды.
- **13.** $ABCDA_1B_1C_1D_1$ куб, длина ребра которого равна $4\sqrt{6}$. Сфера проходит через его вершины B и D_1 и середины ребер BB_1 и CC_1 . Найдите площадь сферы S, в ответ запишите значение выражения $\frac{S}{\pi}$.
- 14. Сфера проходит через все вершины нижнего основания правильной четырехугольной призмы и касается ее верхнего основания. Найдите площадь сферы, если площадь диагонального сечения призмы равна $\frac{9\sqrt{3}}{\pi}$, а высота призмы в два раза меньше радиуса сферы.
- 15. Образующая конуса равна 17, а высота 8. Найдите площадь боковой поверхности конуса.

- 1) 153π 2) 255π 3) 127.5π 4) 510π 5) 136π
- **16.** Квадрат, длина диагонали которого равна 8, лежит в плоскости α . Сфера касается плоскости α в точке пересечения диагоналей квадрата. Найдите площадь сферы, если расстояние от центра сферы до вершины квадрата равно $4\sqrt{2}$.
 - 1) 8π 2) 16π 3) 64π 4) $32\sqrt{2}\pi$ 5) 32π
- 17. Цилиндр пересечен такой плоскостью, параллельной оси цилиндра, что в сечении получился квадрат площадью 100. Найдите значение выражения $\frac{S}{\pi}$, где S площадь боковой поверхности цилиндра, если расстояние от оси цилиндра до плоскости сечения равно $\sqrt{39}$.
- **18.** Плоскость, параллельная основанию треугольной пирамиды, делит ее высоту в отношении 5 : 3, если считать от вершины пирамиды. Найдите площадь сечения пирамиды данной плоскостью, если она меньше площади основания пирамиды на 39.
- **19.** Радиус окружности, вписанной в правильный шестиугольник, равен $6\sqrt{3}$. Найдите значение выражения $\frac{S}{\sqrt{3}}$, где S площадь правильного шестиугольника.
- **20.** Цилиндр пересечен такой плоскостью, параллельной оси цилиндра, что в сечении получился квадрат площадью 36. Найдите значение выражения $\frac{S}{\pi}$, где S площадь боковой поверхности цилиндра, если расстояние от оси цилиндра до плоскости сечения равно $2\sqrt{10}$.
- **21.** Плоскость, параллельная основанию треугольной пирамиды, делит ее высоту в отношении 3 : 2, если считать от вершины пирамиды. Найдите площадь сечения пирамиды данной плоскостью, если она меньше площади основания пирамиды на 48.
- **22.** Квадрат, длина диагонали которого равна 20, лежит в плоскости α . Сфера касается плоскости α в точке пересечения диагоналей квадрата. Найдите площадь сферы, если расстояние от центра сферы до вершины квадрата равно $10\sqrt{2}$.
 - 1) 200π 2) 400π 3) 20π 4) $200\sqrt{2}\pi$ 5) 100π